Module AssetAllocator.algorithms.TRPO.utils
Expand source code
import math
import numpy as np
import torch
def get_flat_params_from(model):
    params = []
    for param in model.parameters():
        params.append(param.data.view(-1))
    flat_params = torch.cat(params)
    return flat_params
def set_flat_params_to(model, flat_params):
    prev_ind = 0
    for param in model.parameters():
        flat_size = int(np.prod(list(param.size())))
        param.data.copy_(
            flat_params[prev_ind:prev_ind + flat_size].view(param.size()))
        prev_ind += flat_size
def get_flat_grad_from(net, grad_grad=False):
    grads = []
    for param in net.parameters():
        if grad_grad:
            grads.append(param.grad.grad.view(-1))
        else:
            grads.append(param.grad.view(-1))
    flat_grad = torch.cat(grads)
    return flat_grad
def saveTensorCsv(t,filename):
    import csv
    with open(filename, mode='w') as file:
        writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
        for i in range(t.size()[0]):
            writer.writerow(t[i].detach().numpy().tolist())
def loadTensorCsv(filename):
    import csv
    with open(filename) as file:
        reader = csv.reader(file, delimiter=',')
        t = []
        for row in reader:
            t.append([float(x) for x in row])
        return torch.Tensor(t)
def saveParameterCsv(param,filename):
    import csv
    with open(filename, mode='w') as file:
        writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
        writer.writerow(param.detach().numpy().tolist())
def loadParameterCsv(filename):
    import csv
    with open(filename) as file:
        reader = csv.reader(file, delimiter=',')
        for row in reader:
            param = [float(x) for x in row]
    return torch.Tensor(param)Functions
- def get_flat_grad_from(net, grad_grad=False)
- 
Expand source codedef get_flat_grad_from(net, grad_grad=False): grads = [] for param in net.parameters(): if grad_grad: grads.append(param.grad.grad.view(-1)) else: grads.append(param.grad.view(-1)) flat_grad = torch.cat(grads) return flat_grad
- def get_flat_params_from(model)
- 
Expand source codedef get_flat_params_from(model): params = [] for param in model.parameters(): params.append(param.data.view(-1)) flat_params = torch.cat(params) return flat_params
- def loadParameterCsv(filename)
- 
Expand source codedef loadParameterCsv(filename): import csv with open(filename) as file: reader = csv.reader(file, delimiter=',') for row in reader: param = [float(x) for x in row] return torch.Tensor(param)
- def loadTensorCsv(filename)
- 
Expand source codedef loadTensorCsv(filename): import csv with open(filename) as file: reader = csv.reader(file, delimiter=',') t = [] for row in reader: t.append([float(x) for x in row]) return torch.Tensor(t)
- def saveParameterCsv(param, filename)
- 
Expand source codedef saveParameterCsv(param,filename): import csv with open(filename, mode='w') as file: writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(param.detach().numpy().tolist())
- def saveTensorCsv(t, filename)
- 
Expand source codedef saveTensorCsv(t,filename): import csv with open(filename, mode='w') as file: writer = csv.writer(file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i in range(t.size()[0]): writer.writerow(t[i].detach().numpy().tolist())
- def set_flat_params_to(model, flat_params)
- 
Expand source codedef set_flat_params_to(model, flat_params): prev_ind = 0 for param in model.parameters(): flat_size = int(np.prod(list(param.size()))) param.data.copy_( flat_params[prev_ind:prev_ind + flat_size].view(param.size())) prev_ind += flat_size