Module AssetAllocator.algorithms.TD3.critic
Expand source code
import torch
import torch.nn as nn
import torch.optim as optim
class Critic(nn.Module):
    """This is the critic network for the TD3 Agent.
    Original paper can be found at https://arxiv.org/abs/1802.09477
    This implementation was adapted from https://github.com/saashanair/rl-series/tree/master/td3
    
    """
    def __init__(self, state_dim, action_dim, hidden_dim, lr = 0.1):
        """Initializes the TD3 Critic Network
        Args:
            state_dim (int): State space dimension
            action_dim (int): Action space dimension
            hidden_dim (int): Size of hidden layer
            lr (float, optional): Learning rate. Defaults to 0.1.
        """        
        super(Critic, self).__init__()
        self.linear_relu_stack = nn.Sequential(
                nn.Linear(state_dim + action_dim, hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim, hidden_dim),
                nn.ReLU(),
                nn.Linear(hidden_dim, 1),
        )
        self.optimizer = optim.Adam(self.linear_relu_stack.parameters(), 
                                    lr = lr)
        self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, 'min', patience = 2)
        
    def forward(self, state, action):
        """Forward pass
        Args:
            state (array_like): Current environment state
            action (array_like): Current agent's action
        Returns:
            out: State-Action Values
        """
        x = torch.cat([state, action], dim = 1)
        out = self.linear_relu_stack(x)
        return outClasses
- class Critic (state_dim, action_dim, hidden_dim, lr=0.1)
- 
This is the critic network for the TD3 Agent. Original paper can be found at https://arxiv.org/abs/1802.09477 This implementation was adapted from https://github.com/saashanair/rl-series/tree/master/td3 Initializes the TD3 Critic Network Args- state_dim:- int
- State space dimension
- action_dim:- int
- Action space dimension
- hidden_dim:- int
- Size of hidden layer
- lr:- float, optional
- Learning rate. Defaults to 0.1.
 Expand source codeclass Critic(nn.Module): """This is the critic network for the TD3 Agent. Original paper can be found at https://arxiv.org/abs/1802.09477 This implementation was adapted from https://github.com/saashanair/rl-series/tree/master/td3 """ def __init__(self, state_dim, action_dim, hidden_dim, lr = 0.1): """Initializes the TD3 Critic Network Args: state_dim (int): State space dimension action_dim (int): Action space dimension hidden_dim (int): Size of hidden layer lr (float, optional): Learning rate. Defaults to 0.1. """ super(Critic, self).__init__() self.linear_relu_stack = nn.Sequential( nn.Linear(state_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1), ) self.optimizer = optim.Adam(self.linear_relu_stack.parameters(), lr = lr) self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, 'min', patience = 2) def forward(self, state, action): """Forward pass Args: state (array_like): Current environment state action (array_like): Current agent's action Returns: out: State-Action Values """ x = torch.cat([state, action], dim = 1) out = self.linear_relu_stack(x) return outAncestors- torch.nn.modules.module.Module
 Class variables- var dump_patches : bool
- var training : bool
 Methods- def forward(self, state, action) ‑> Callable[..., Any]
- 
Forward pass Args- state:- array_like
- Current environment state
- action:- array_like
- Current agent's action
 Returns- out
- State-Action Values
 Expand source codedef forward(self, state, action): """Forward pass Args: state (array_like): Current environment state action (array_like): Current agent's action Returns: out: State-Action Values """ x = torch.cat([state, action], dim = 1) out = self.linear_relu_stack(x) return out