Module AssetAllocator.algorithms.SAC.SAC
Expand source code
import math
import random
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
class NormalizedActions(gym.ActionWrapper):
def _action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return actions
class ValueNetwork(nn.Module):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNetwork, self).__init__()
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = self.linear3(x)
return x
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2,
device = 'cpu'):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.device = device
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-6):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
z = normal.sample()
action = torch.tanh(z)
log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon)
log_prob = log_prob.sum(-1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
z = normal.sample()
action = torch.nn.Softmax(dim = 1)(z)
action = action.detach().cpu().numpy()
#print('Agent: ', action[0])
return action[0]
Classes
class NormalizedActions (env)
-
Wraps the environment to allow a modular transformation.
This class is the base class for all wrappers. The subclass could override some methods to change the behavior of the original environment without touching the original code.
Note
Don't forget to call
super().__init__(env)
if the subclass overrides :meth:__init__
.Expand source code
class NormalizedActions(gym.ActionWrapper): def _action(self, action): low = self.action_space.low high = self.action_space.high action = low + (action + 1.0) * 0.5 * (high - low) action = np.clip(action, low, high) return action def _reverse_action(self, action): low = self.action_space.low high = self.action_space.high action = 2 * (action - low) / (high - low) - 1 action = np.clip(action, low, high) return actions
Ancestors
- gym.core.ActionWrapper
- gym.core.Wrapper
- gym.core.Env
class PolicyNetwork (num_inputs, num_actions, hidden_size, init_w=0.003, log_std_min=-20, log_std_max=2, device='cpu')
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class PolicyNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3, log_std_min=-20, log_std_max=2, device = 'cpu'): super(PolicyNetwork, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.device = device self.linear1 = nn.Linear(num_inputs, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.mean_linear = nn.Linear(hidden_size, num_actions) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear = nn.Linear(hidden_size, num_actions) self.log_std_linear.weight.data.uniform_(-init_w, init_w) self.log_std_linear.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-6): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.nn.Softmax(dim = 1)(z) action = action.detach().cpu().numpy() #print('Agent: ', action[0]) return action[0]
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def evaluate(self, state, epsilon=1e-06)
-
Expand source code
def evaluate(self, state, epsilon=1e-6): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std
def forward(self, state) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std
def get_action(self, state)
-
Expand source code
def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.nn.Softmax(dim = 1)(z) action = action.detach().cpu().numpy() #print('Agent: ', action[0]) return action[0]
class ReplayBuffer (capacity)
-
Expand source code
class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity self.buffer = [] self.position = 0 def push(self, state, action, reward, next_state, done): if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = map(np.stack, zip(*batch)) return state, action, reward, next_state, done def __len__(self): return len(self.buffer)
Methods
def push(self, state, action, reward, next_state, done)
-
Expand source code
def push(self, state, action, reward, next_state, done): if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity
def sample(self, batch_size)
-
Expand source code
def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) state, action, reward, next_state, done = map(np.stack, zip(*batch)) return state, action, reward, next_state, done
class SoftQNetwork (num_inputs, num_actions, hidden_size, init_w=0.003)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class SoftQNetwork(nn.Module): def __init__(self, num_inputs, num_actions, hidden_size, init_w=3e-3): super(SoftQNetwork, self).__init__() self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size) self.linear2 = nn.Linear(hidden_size, hidden_size) self.linear3 = nn.Linear(hidden_size, 1) self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, state, action) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x
class ValueNetwork (state_dim, hidden_dim, init_w=0.003)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class ValueNetwork(nn.Module): def __init__(self, state_dim, hidden_dim, init_w=3e-3): super(ValueNetwork, self).__init__() self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, state) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x