Module AssetAllocator.algorithms.PPO.network
This file contains a neural network module for us to define our actor and critic networks in PPO.
Expand source code
"""
This file contains a neural network module for us to
define our actor and critic networks in PPO.
"""
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class FeedForwardNN(nn.Module):
"""
A standard in_dim-64-64-out_dim Feed Forward Neural Network.
"""
def __init__(self, in_dim, out_dim):
"""
Initialize the network and set up the layers.
Parameters:
in_dim - input dimensions as an int
out_dim - output dimensions as an int
Return:
None
"""
super(FeedForwardNN, self).__init__()
self.layer1 = nn.Linear(in_dim, 64)
self.layer2 = nn.Linear(64, 64)
self.layer3 = nn.Linear(64, out_dim)
def forward(self, obs):
"""
Runs a forward pass on the neural network.
Parameters:
obs - observation to pass as input
Return:
output - the output of our forward pass
"""
# Convert observation to tensor if it's a numpy array
if isinstance(obs, np.ndarray):
obs = torch.tensor(obs, dtype=torch.float)
activation1 = F.relu(self.layer1(obs))
activation2 = F.relu(self.layer2(activation1))
output = self.layer3(activation2)
return output
Classes
class FeedForwardNN (in_dim, out_dim)
-
A standard in_dim-64-64-out_dim Feed Forward Neural Network.
Initialize the network and set up the layers.
Parameters
in_dim - input dimensions as an int out_dim - output dimensions as an int
Return
None
Expand source code
class FeedForwardNN(nn.Module): """ A standard in_dim-64-64-out_dim Feed Forward Neural Network. """ def __init__(self, in_dim, out_dim): """ Initialize the network and set up the layers. Parameters: in_dim - input dimensions as an int out_dim - output dimensions as an int Return: None """ super(FeedForwardNN, self).__init__() self.layer1 = nn.Linear(in_dim, 64) self.layer2 = nn.Linear(64, 64) self.layer3 = nn.Linear(64, out_dim) def forward(self, obs): """ Runs a forward pass on the neural network. Parameters: obs - observation to pass as input Return: output - the output of our forward pass """ # Convert observation to tensor if it's a numpy array if isinstance(obs, np.ndarray): obs = torch.tensor(obs, dtype=torch.float) activation1 = F.relu(self.layer1(obs)) activation2 = F.relu(self.layer2(activation1)) output = self.layer3(activation2) return output
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, obs) ‑> Callable[..., Any]
-
Runs a forward pass on the neural network.
Parameters
obs - observation to pass as input
Return
output - the output of our forward pass
Expand source code
def forward(self, obs): """ Runs a forward pass on the neural network. Parameters: obs - observation to pass as input Return: output - the output of our forward pass """ # Convert observation to tensor if it's a numpy array if isinstance(obs, np.ndarray): obs = torch.tensor(obs, dtype=torch.float) activation1 = F.relu(self.layer1(obs)) activation2 = F.relu(self.layer2(activation1)) output = self.layer3(activation2) return output